The theory of aeroelastic wave propagation along a long beam traveling in a tunnel lined with Helmholtz resonators is developed, and the effect of the lining on the stability of the beam is examined. Assuming an elastic beam of uniform cross section and of infinite length, and taking account of the compressibility of the air, the linear dispersion relation is derived for an air-beam-cavity system on disregarding all dissipative effects. The lining newly introduces the cavity mode of propagation in addition to the acoustic mode and the beam mode. When a restoring force in the transverse direction to the beam’s axis is present, it is found that all modes are neutrally stable. Without this force, Kelvin-Helmholtz instability occurs in the beam mode for a long wavelength and a low frequency. But the lining does not take part in this instability. The stability of wave propagation is also examined from the standpoint of the wave energy. It is revealed that the cavity mode turns into the mode of so-called negative energy waves as the wave number increases beyond a critical value. Emergence of negative energy waves implies destabilization of the stable modes by weak dissipative effects. The negative energy waves appear also in the beam mode, if the restoring force is absent, in a very narrow band of the wave number.

Nomenclature

- a = sound speed in the air
- B = throat’s cross-sectional area of the Helmholtz resonator
- b = radius of the beam
- C = complex amplitude of the beam’s deflection
- D = dispersion relation
- D_a, D_b = dispersion relation of the acoustic and beam modes, respectively
- E = total wave energy density per unit axial length of the tunnel
- E_l = flexural rigidity of the beam
- E_t = temporal average of E over T
- F = dimensionless flexural rigidity of the beam
- G = dimensionless spring constant
- H = deflection of the beam in the y direction as a function of x and t
- h = deflection of the beam in the y direction as a function of x and t
- I = total wave energy flux density per unit axial length of the tunnel
- I_l = temporal average of I over T
- J = wave energy flux density
- K = spring constant of the restoring force per unit axial length of the beam
- k = wave number
- L = throat’s length of the Helmholtz resonator
- M = Mach number of the beam’s traveling speed, U/a_0
- m = beam’s mass per unit axial length
- m_i = induced mass of the beam
- N^* = number density of the resonators per unit area of the tunnel wall including orifices
- P = excess pressure in the tunnel over p_0 in the moving frame with the beam
- P_p = excess pressure in the cavity over p_0 in the moving frame with the beam
- p = excess pressure in the tunnel over p_0 in the frame fixed with the tunnel
- p_R = excess pressure at the throat’s orifice on the tunnel side
- p_c = excess pressure in the cavity of the Helmholtz resonator
- p_0 = atmospheric pressure
- Q_b = force exerted on the beam by the surrounding air at ξ and τ
- q_b = force exerted on the beam by the surrounding air at x and t
- R = radius of the tunnel
- r = radial coordinate
- T = one period of the oscillation in the frame moving with the beam
- t = time
- U = traveling speed of the beam in the axial direction of the tunnel
- V = cavity’s volume of the Helmholtz resonator
- V^* = N^*V
- w = velocity of the air in the throat of the Helmholtz resonator directed into the cavity
- w^* = mean velocity of the air averaged over the tunnel wall including orifices
- x = axial coordinate along the tunnel
- y = transverse coordinate along the deflection of the beam
- z = coordinate perpendicular to x and y
- β = $(k^2 - \omega^2/m_0)^{1/2}$ or $(k^2 - \omega^2)^{1/2}$ in dimensionless form
- σ = wave energy density
- θ = circumferential angle
- κ = smallness of the resonators
- v = ratio of the beam’s radius to the tunnel’s radius
- ξ = axial coordinate in the moving frame with the beam, $x - Ut$
- ρ_c = density fluctuation of the air in the cavity of the Helmholtz resonator
- ρ_0 = density of the air in equilibrium under the atmospheric pressure
- σ = typical induced mass of the beam relative to m
- τ = time
- Φ = velocity potential perturbed from the uniform flow $-U\xi$ in the frame moving with the beam
- ϕ = velocity potential in the frame fixed with the tunnel
- ω = angular frequency in the frame fixed with the tunnel
- ω^* = angular frequency in the frame moving with the beam, $\omega - Uf$
- ω_0 = natural angular frequency of the Helmholtz resonator

Subscripts

- a = air or acoustic mode
I. Introduction

This paper develops the theory of aeroelastic wave propagation to examine the stability of a long beam traveling in a tunnel. Particularly concerned is the effect of the acoustic lining of the tunnel’s inner surface with Helmholtz resonators. This problem is motivated by an interest to know how a train behaves aeroelastically when traveling in a tunnel with high speeds and how the lining affects the stability of the train. The lining is proposed for the purpose of inhibiting emergence of an acoustic shock wave in a tunnel generated by a train’s entry into the tunnel. In fact, the shock wave can occur in long tunnels (of several to 10 km long) for such a low train’s Mach number as 0.15. As the train speed is increased, the magnitude of shock wave is strengthened and the shock-formation distance from the tunnel entrance is shortened; namely, the shock wave tends to emerge in shorter tunnels.

To simplify the problem, we assume an elastic beam of uniform cross section and of infinite length. Admittedly, however, this may be insufficient to model an actual train in that it usually comprises many vehicles. To be more realistic, it may be appropriate to assume piecewise uniform beams articulated or coupled simply by pin joints. But since the main concern in this paper is to investigate the effect of the lining, it is the simplest approach to start with the present model. The beam is assumed to be subjected not only to bending but also to a restoring force in the transverse direction to the beam’s axis. In a case of magnetically levitated trains, this lateral force is provided by a guideway. Let the inner surface of the tunnel be lined uniformly with the identical Helmholtz resonators. A distance between the neighboring resonators is assumed to be so small compared with a typical wavelength that the effect of the resonators may be smeared out. In general, when a train travels in a tunnel, the surrounding air in an annular region between the train and the tunnel is perturbed and forced into motion by friction. If end effects near the train’s head and tail are ignored, the Reynolds number associated with the train speed and its typical diameter takes a very large value on the order of 10^7. Hence turbulence in flows may become important in practice but is ignored here by assuming infinitesimally small disturbances. Furthermore discarding a thermoviscous loss of the air and an intrinsic damping of the beam as well, we derive the linear dispersion relation for aeroelastic wave propagation in the air-beam-cavity system.

However, it is not always sufficient to discuss the stability on the basis of the lossless dispersion relation thus derived, even if only the linear theory is concerned. Dissipative effects are always involved more or less. In such a system that there exists an infinitely large store of energy supplied by the traveling of the beam or by the air if viewed from a frame moving with the beam, we cannot say immediately that the dissipative effects lead always to stabilization of neutrally stable waves. In contrast, it often happens that they lead to destabilization. Then the concept of negative energy waves plays an important role in discussing their stability. It was originally conceived by Benjamin and Landahl and later crystallized by Cairns. For some examples, see Ostrovskii et al. and Crighton and Oswell. Whereas usual positive energy waves are stabilized by dissipative effects, negative energy waves are destabilized by them. Intuitively, because any dissipative effects, though assumed to be linear and weak, tend to decrease the wave energy, it follows that the negative energy waves grow in magnitude. To identify the sign of the wave energy, we must establish the energy equation and calculate the average of the wave energy density over one period of oscillation. The sign of the mean wave energy density can then be derived from the lossless dispersion relation.

In the following, the formulation of the problem is first given in Sec. II and the linear dispersion relation is then derived in Sec. III. Section IV is devoted to numerical evaluation of the dispersion relation and also to its asymptotic evaluation in the case of weak aeroelastic coupling. In Sec. V, the mean wave energy is shown to be derived from the dispersion relation and the mode of the negative energy waves is identified.

II. Formulation of the Problem

We start with formulating the problem. Suppose an infinitely long tunnel of radius R. Take the (x, y, z) Cartesian coordinate system and the (r, θ, x) cylindrical coordinate system so that the x axis may be taken in common along the center axis of the tunnel. The cross-sectional configuration is shown in Fig. 1. An elastic beam of radius $b(<R)$ extends to infinity along its axis, and it travels with a constant speed in the x direction. This speed is smaller, of course, than the sound speed in the surrounding air. In the unperturbed state, the beam is straight and concentric with the tunnel, whereas the quiescent air fills the annular region $b < r < R$ and the resonators through orifices. All dissipative effects and the gravity are ignored.

When the beam is bent because of air-beam interaction, it is constrained to deflect in the y direction only and is subjected to the restoring force proportional to the deflection. The inner surface of the tunnel is lined uniformly with many but identical resonators and is smooth and rigid. Since the distance between the neighboring resonators is taken to be small enough compared with a typical wavelength, the resonators are regarded as being distributed continuously and their effect is considered in the averaged form over the inner surface of the tunnel including the throat’s orifices.

On assuming infinitesimal deflection of the beam, the behavior of the perturbed air is described on taking account of its compressibility by the following equation for $\phi(r, \theta, x, t)$:

$$\frac{\partial \phi}{\partial t} = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial \phi}{\partial r} \right) + \frac{1}{r} \frac{\partial}{\partial \theta} \left(r \frac{\partial \phi}{\partial \theta} \right) + \frac{1}{r^2} \frac{\partial^2 \phi}{\partial x^2}$$

(1)

In terms of ϕ, the excess pressure p is given by

$$p(r, \theta, x, t) = -\rho_0 \frac{\partial \phi}{\partial t}$$

(2)

and the density fluctuation is given by ρ/ρ_0^2.

When the beam is deflected by $h(x, t)$, the kinematical boundary condition at the beam’s surface requires that

$$\frac{\partial \phi}{\partial r} = \frac{\partial h}{\partial t} \cos \theta$$

(3)

at $r = b$.

As the beam is moving in the axial direction, it is appropriate to take the moving frame ξ and τ instead of x and t. In this frame, the flexural motion of the beam is governed by

$$m \frac{\partial^2 H}{\partial \xi^2} + EI \frac{\partial^4 H}{\partial \xi^4} + KH = Q_b$$

(4)

for $H(\xi, \tau) = h(\xi + U \tau, \tau)$. Here Q_b is calculated as follows. The force q_b acting on the beam at x in the fixed frame is given by

![Fig. 1 Cross-sectional configuration of a tunnel lined acoustically with Helmholtz resonators.](image-url)
The equation of motion for the air in the throat is then given by:

\[\rho_b \frac{\partial V}{\partial t} = \rho_b B w \]

Because the throat's length is much shorter than a typical wavelength, the motion of the air in the cavity is ignored so that only the mass conservation is concerned:

\[\rho_b \frac{\partial \rho_b}{\partial t} = \rho_b B w \]

Because the throat's length is much shorter than a typical wavelength, the air in the throat may be regarded as being incompressible and is driven by the pressure difference between \(p_c \) and \(p_r \).

Next we formulate the resonator's response to the external pressure fluctuation at its orifice. Assuming that the cavity's volume is much larger than the throat's, the motion of the air in the cavity is thus considered.

Integrating the pressure over the beam's surface per unit axial length yields

\[\frac{\partial \rho_b}{\partial t} = \rho_b \frac{\partial \rho_b}{\partial t} \]

\[\frac{\partial \rho_b}{\partial t} = \rho_b \frac{\partial \rho_b}{\partial t} \]

Assuming sinusoidal deflection of the beam in the form of \(w = A \cos kx \), and \(\phi \) is given by

\[\frac{\partial \rho_b}{\partial t} = \rho_b \frac{\partial \rho_b}{\partial t} \]

\[\frac{\partial \rho_b}{\partial t} = \rho_b \frac{\partial \rho_b}{\partial t} \]

Hence the boundary condition at the inner surface of the tunnel is taken as

\[\frac{\partial \rho_b}{\partial r} = \frac{\partial \rho_b}{\partial t} \]

III. Dispersion Relation

Let us now derive the dispersion relation of wave propagation by assuming sinusoidal deflection of the beam in the form of

\[h(x, t) = C \exp[i(kx - \omega t)] \]

where \(k \) is taken to be real, whereas \(\omega \) is complex in general, as will be determined by the dispersion relation. In the moving frame, Eq. (11) is given by

\[h(\xi, r) = C \exp[i(k\xi - \omega' t)] \]

In view of Eqs. (11) and (3), a solution to Eq. (1), \(\phi \), is sought in the following form:

\[\phi = f(r) \cos \theta \exp[i(kx - \omega t)] \]

Then the boundary condition (3) is imposed on \(f \) as

\[\frac{df}{dr} = -i\omega C \]

Expressing \(p_b \) in terms of \(f \) and using Eq. (8), it follows that

\[p_c = \frac{\rho_b \omega}{1 - \omega^2/\omega_0^2} f(R) \cos \theta \exp[i(kx - \omega t)] \]

Further using Eq. (9), the boundary condition (10) is given by

\[\frac{df}{dr} = \frac{V^*}{\omega_0} \frac{\omega^2}{(1 - \omega^2/\omega_0^2)} f(R) \]

at \(r = R \)

Substituting Eq. (13) into Eq. (1), one sees that \(f(r) \) satisfies Bessel's equation:

\[\frac{df}{dr} + \frac{1}{r} \frac{df}{dr} - \left(\beta^2 + \frac{1}{r^2} \right) f = 0 \]

with \(\beta^2 = k^2 - \omega^2/\omega_0^2 \). This equation is solved in terms of the modified Bessel functions \(K_l \) and \(K'_l \) of the first order as follows:

\[f(r) = C_1 K_l(\beta r) + C_2 K'_l(\beta r) \]

The boundary conditions are given by

\[D_1 D_1 - D_2 D_2 = 1/b R \beta^2 \]

which will be used later.

Setting \(F_1 \) and \(F_2 \) to be

\[F_1 = \beta D_1 - \frac{V^*}{\omega_0} \frac{\omega^2}{(1 - \omega^2/\omega_0^2)} D_1 \]

\[F_2 = \beta^2 D_2 - \frac{V^*}{\omega_0} \frac{\omega^2}{(1 - \omega^2/\omega_0^2)} \beta D_2 \]

\[C_1 \) and \(C_2 \) are determined in terms of \(C \) as follows:

\[C_1 = -\frac{i\omega}{F_2} \left[\beta K'_l(\beta R) - \frac{V^*}{\omega_0} \frac{\omega^2}{(1 - \omega^2/\omega_0^2)} K_l(\beta R) \right] \]

\[C_2 = \frac{i\omega}{F_2} \left[\beta l'_l(\beta R) - \frac{V^*}{\omega_0} \frac{\omega^2}{(1 - \omega^2/\omega_0^2)} l_l(\beta R) \right] \]

With \(C_1 \) and \(C_2 \) thus specified, \(f(R) \), \(p_r \), and \(p_c \) are expressed as follows:

\[f(R) = (i\omega/F_2) C \]

\[\frac{p_r}{F_2} = -\frac{V^*}{R F_2} C \cos \theta \exp[i(kx - \omega t)] \]

\[\frac{p_c}{F_2} = -\frac{\rho_b \omega^2}{R F_2} C \cos \theta \exp[i(kx - \omega t)] \]

Having obtained the flowfield with \(C \) given, the force acting on the beam is calculated by using Eq. (5). In the moving frame, it is given by

\[Q_b = -i \pi \rho_b b a^2 f(b) \exp[i(k \xi - \omega t)] \]

with

\[f(b) = -i \omega \frac{F_1}{F_2} C \]

Upon substituting Eqs. (12) and (28) with Eq. (29) in Eq. (4), it is required for \(C \) to be nontrivial that

\[Y = \pi \rho_b b a^2 (F_1/F_2) \equiv D = 0 \]

where \(Y = m a^2 - E k^4 - K \). Replacing \(\beta \) involved in \(F_1 \) and \(F_2 \) with \((k^2 - \omega^2/\omega_0^2)^{1/2} \), we derive the desired dispersion relation between \(k \) and \(\omega \) (or \(\omega' \)).
IV. Wave Propagation and Stability

A. Numerical Evaluation

We now examine the dispersion relation and discuss the stability of wave propagation. First, it is appropriate to rewrite Eq. (30) in a dimensionless form. The wave number and the angular frequency are normalized, respectively, by setting

\[kR \rightarrow k \quad \text{and} \quad \omega R/a_0 \rightarrow \omega \]

while the following dimensionless parameters are introduced:

\[\frac{b}{R} \equiv \omega(t<1), \quad \frac{U}{a_0} \equiv M(t<1), \quad \frac{\pi \rho_0 b^2}{m} \equiv \sigma \]

\[\frac{E_1}{\pi R^2 a_0^2} = F, \quad \frac{K R^2}{m a_0^2} = G, \quad \frac{2 V^*}{R} = \kappa \]

In accordance with this normalization, the arguments of \(D_j \) (\(j = 1, 2, 3, 4 \)) in Eq. (33) should be understood as \(\beta \rightarrow \beta V \) and \(\beta R \rightarrow \beta \) with \(\beta^2 = k^2 - \omega^2 \) in the dimensionless form. Furthermore, setting \(\omega_0 R/a_0 \rightarrow \omega_0 \), one can rewrite Eq. (30) after a little manipulation as

\[[(\omega - \omega_0)^2 - \kappa^2\omega^2]D_4 = \kappa^2\omega^2 D_2 \]

where \(\sigma \) designates the ratio of a typical induced mass of the cylindrical beam to the actual mass per unit axial length and controls the degree of aeroelastic coupling. In fact, \(\pi \rho_0 b^2 \) is the induced mass of the cylinder in the limits of a low frequency \(\omega \rightarrow 0 \) and of a thin beam \(v \rightarrow 0 \). For an arbitrary frequency, the induced mass depends on the frequency and also geometrical configuration (see Appendix A). The ratio \(\sigma \) is very small, as expected. If \(\sigma \) is ignored, Eq. (33) is decoupled into two factors for independent modes of propagation. The first factor represents the dispersion relation of the flexural waves propagating on the beam. This is called the beam mode. The second factor represents that of the acoustic waves propagating in the annular region when the beam is free from deflection (i.e., \(C \equiv 0 \)). This is called the acoustic mode. Note that this mode has cos \(\theta \) dependence and is nonaxisymmetric. When the tunnel is not lined, i.e., \(K = 0 \), the dispersion relation of the acoustic mode is given simply by \(k^2 - \omega^2 = \frac{c^2}{\rho_0} \) where \(c_0 \) is the velocity of sound in air. The roots of \(D_1 \) and \(D_2 \) are pure imaginary and nonzero because \(\beta^2 D_4 \) approaches \((1 - \omega^2)/2v^2 \) as \(\beta \rightarrow 0 \) [see Eq. (35)]. Then the root of \(1 - \omega_0^2/\omega^2 = 0 \) is spurious. But when \(\kappa \) is present, there appears another mode of propagation from this spurious root. This root is the cavity mode associated with the lining and is distinguished from the acoustic mode associated with the roots of \(D_1 \). Incidentally, the factor in the square brackets on the right-hand side of Eq. (33) is the dispersion relation in a case that the boundary condition (14) at \(r = b \) is replaced by \(p = 0 \), i.e., \(f(b) = 0 \). To evaluate the dispersion relation numerically, we employ the following plausible values:

\[b = 1.5 \text{ m}, \quad R = 5 \text{ m}, \quad \rho_0 = 1.2 \text{ kg/m}^3 \]

\[a_0 = 340 \text{ m/s}, \quad m = 2.4 \times 10^3 \text{ kg/m} \]

\[E I = 2 \times 10^6 \text{ kgm}^2/\text{s}^2 \]

so that \(v = 0.3 \), \(\sigma = 3.5 \times 10^{-3} \), and \(F = 0.29 \). The preceding data will not differ significantly from those to be used in actual cases. But a choice of \(G \) and \(\kappa \) is determined by the design of the train–tunnel system. In \(G, K/m \) determines a typical frequency of oscillation in the transverse direction of the beam. If this frequency is designed to be as low as 20 rad/s (1 Hz), \(G \) is found to take a small value of \(8.5 \times 10^{-3} \). On the other hand, \(\kappa \) measures the smallness of the resonators. This represents the ratio of the total volume of the resonators per unit axial length of the tunnel, \(2\pi R^2 N^*V \), to the tunnel’s cross-sectional area \(\pi R^2 \). The value of \(\kappa \) is usually taken to be much smaller than unity, e.g., 0.1.

We first examine the dispersion relation in the limit of a long wavelength \(k \rightarrow 0 \) and a low frequency \(\omega \rightarrow 0 \). As \(\beta^2 \) is correspondingly small, \(D_1 \) (\(j = 1, 2, 3, 4 \)) in Eq. (19) are expanded in terms of \(\beta \) after normalization. It then follows that

\[D_1 = -\frac{1 - \omega^2}{2v^2} + O(\beta^2), \quad D_2 = \frac{1 + \omega^2}{2v^2} + O(\beta^2) \]

\[D_3 = -\frac{1 - \omega^2}{2v^2} + O(\beta^2), \quad D_4 = \frac{1 - \omega^2}{2v^2} + O(1) \]

Approximating \(D_j \) (\(j = 1, 2, 3, 4 \)) in Eq. (33) by Eq. (35) and assuming \(G \) to be small and comparable with \(k^2, \omega \) and \(\omega \) satisfy the following equation to the lowest approximation:

\[(1 + \sigma s)\omega^2 - 2M\omega + (M^2k^2 - G) = 0 \]

with \(s = (1 + \omega^2)/(1 - \omega^2) \). In the limit of a long wavelength, \(\omega \) approaches a finite value

\[\omega = \pm \sqrt{G/(1 + \sigma s)} \equiv \pm \omega_0 \]

If \(G \) vanishes, then \(\omega \) is given by

\[\omega = \left\{ \frac{\pm i(\sigma s)^{1/2}}{1 + \sigma s} \right\} Mk \]

This implies temporal instability as well as damping. Such an instability may be classified as the class \(C \) instability or Kelvin–Helmholtz instability of Benjamin. From a detailed analysis, it is found that this instability occurs for a wave number in an interval \(0 < k < k_f \) with \(k_f = (\sigma s)/F^{1/2}M + O(\sigma s^{1/2}) \). Given \(\sigma s/F \), \(k_f \) increases in proportion to the Mach number \(M \). It also increases as the beam becomes lighter or less rigid. But the resonators do not take part in this instability.

We now demonstrate the dispersion relation by solving Eq. (33) numerically. First we consider a case of an ordinary tunnel by setting \(\kappa = 0 \). Figure 2 shows the dispersion curves for \(M = 0.4 \) and \(G = 0.01 \). There exists no imaginary part in \(\omega \). The dispersion curves of Eq. (33) are symmetric with respect to the origin \(k = \omega = 0 \), and therefore the half-plane \(k > 0 \) is shown. A unit wave number and a unit angular frequency correspond, respectively, to a wavelength of 31.4 m and a frequency of 10.8 Hz. Over the range \(0 \leq k \leq 5 \) and \(-5 \leq \omega \leq 5 \), there appear four branches where the dotted line corresponds to the line \(\omega = Mk \). The sign attached to the curves indicates that of \(\partial D/\partial \omega \), whose physical meaning will be explained later.

The dispersion curves appear to cross but do not touch each other. Because the right-hand side of Eq. (33) is very small, they are substantially the acoustic mode or the beam mode in the case with \(\sigma = 0 \). For a small value of \(\sigma \), however, they are bent sharply to avoid crossing. There each curve cannot be identified clearly as the
B. Asymptotic Evaluation

In the preceding subsection, the dispersion relation has been evaluated numerically for the plausible values of the parameters. In view of the results, we examine it asymptotically by exploiting the fact that σ is usually very small. In addition, the smallness of κ may also be exploited for further simplification. When σ is neglected in Eq. (33), we have two independent dispersion relations factorized on the left-hand side:

$$(\omega - Mk)^2 - Fk^4 - G = D_0(k, \omega) = 0 \quad (39)$$

and

$$(1 - \omega^2/\omega_0^2)\beta^2 D_k - (\kappa/4)\omega^2 \beta D_2 = D_2(k, \omega) = 0 \quad (40)$$

But this approximation becomes invalid in the vicinity of the intersections of two curves of Eqs. (39) and (40) in the (k, ω) plane because the right-hand side of Eq. (33) no longer remains small in comparison with the left-hand side. This case should be treated separately.

Let the intersections be denoted by $k = k_l$ and $\omega = \omega_l$ ($l = 1, 2, 3, \ldots$), where $D_0(k_l, \omega_l) = D_0(k_l, \omega_l) = 0$. The positive or negative suffixes l represent the intersections located in the upper or lower plane of ω, respectively. The intersections are ordered from the smallest in magnitude of the frequencies and numbered $l = 1, 2, 3, \ldots$ in the upper plane and $l = -1, -2, -3, \ldots$ in the lower plane, respectively. Note that ω_0 is the natural frequency of the resonator. Setting $\delta k = k - k_l$ and $\delta \omega = \omega - \omega_l$, D_k and D_2 are expanded about k_l and ω_l up to the first order of δk and $\delta \omega$. Here δk and $\delta \omega$ are assumed to be small of order $\sigma^{1/2}$. It then follows from Eq. (33) to the lowest order of σ that

$$\alpha_1(\delta \omega - V_0 \delta k)(\delta \omega - V_0 \delta k) + \mu_l = 0 \quad (41)$$

acoustic or the beam mode. In fact, the curve starting from $\omega \approx 0.09979$ at $k = 0$ by Eq. (37) is the beam mode but is bent sharply to approach the acoustic mode as $k \to \infty$. Another curve starting from $\omega \approx 1.584$ at $k = 0$ is the acoustic mode but bent to approach the beam mode as $k \to \infty$. For the remaining curves, the same holds. But we still call the curves except in the vicinity of the intersections according to the names for the independent modes of propagation in the case with $\sigma = 0$.

If G vanishes, the imaginary part appears in the beam mode near the origin. Figure 3 displays the real and imaginary parts of $\omega''(=\omega - Mk)$ against k for $G = 0$ and three values of M where the dotted, solid, and broken lines correspond, respectively, to the case with $M = 0.2, 0.4$, and 0.6. For $k < k_f$, the imaginary part of ω'' appears in the form of the complex conjugate pair. As k increases beyond k_f, the imaginary part vanishes and the real part bifurcates into two branches. Hence the instability occurs for $k < k_f$. Then the beam is destabilized by the ambient air. But the wavelength corresponding to k_f is found to be very long, about 450 m even for $M = 0.6$. Except in the vicinity of the origin as shown in Fig. 3, the qualitative features of the dispersion curves are similar to those in Fig. 2. As k increases, in fact, the upper and lower branches in Fig. 3 approach, respectively, the curves in Fig. 2 starting from $\omega = \omega_0$ and $-\omega_0$ at $k = 0$.

Next we examine the effect of the resonators. Figure 4 shows the dispersion relation for $M = 0.4$, $G = 0.01$, $\kappa = 0.1$, and $\omega_0 = 1.25$ where the other parameters are fixed and the dotted line corresponds to the line $\omega = Mk$. A remarkable difference from Fig. 2 is that there appear two more branches almost parallel to the k axis. They represent the cavity mode. The curve starting from $\omega \approx 0.09979$ at $k = 0$ is the beam mode. But it is bent horizontally around $k = 1.2$ to approach the cavity mode as $k \to \infty$ with $\omega \to \omega_0 = 1.25$. Another curve starting from $\omega \approx 1.1450$ at $k = 0$ is the cavity mode. As k increases, it is first bent to coincide with the beam mode for a while and then again to approach the acoustic mode as $k \to \infty$. In this figure as well, all branches neither cross each other nor have the imaginary part. Hence all modes are neutrally stable. If we consider the case with $\kappa = 0.1$ but with $G = 0$ to examine the effect of resonators on the instability of the beam mode as shown in Fig. 3, the curves are little affected. Thus as far as the lossless dispersion relation is concerned, the resonators do not play a primary role in the instability of the beam mode near the origin for the present choice of the parameters.

Fig. 3 Dispersion relation between k and $\omega''(=\omega - Mk)$ for the beam mode in the case without the lateral restoring force and the lining, i.e., $G = \kappa = 0$ for three values of M: a) and b) display the real and imaginary parts of ω'', respectively, where the dotted, solid, and broken lines represent the cases with $M = 0.2, 0.4$, and 0.6, respectively, and the sign in a) indicates that of $\partial D/\partial \omega$ for $k > k_f$.
Thus the dispersion relation in the vicinity of the intersection is understood as $pD_j (j = 1, 2, 3, 4)$ is understood as $\phi | \omega \rangle$, where ω the quantum evaluated at ω_i, ϕ, and φ_j. Making use of Eqs. (39) and (20), μ_i is rewritten as

$$\mu_i = -(\sigma/\nu) \left[1 - \left(\omega_i^2 / \omega_0^2 \right) \right] \beta_j D_j - (\kappa/2) \omega_j^2 D_j \omega_j^2$$

where ω_j implies the quantity evaluated at ω_i; V_d and V_a denote the group velocity determined by Eqs. (39) and (40) at the intersection, respectively; β_j in D_j ($j = 1, 2, 3, 4$) is understood as $(\kappa^2 - \omega_j^2)^{1/2} = \beta_j$. Noting that ω_j^2/ω_j^2 is positive, μ_i/ω_i is negative so that no instability occurs around these intersections. Hence the numerical result is endorsed by the asymptotic analysis.

V. Wave Energy and Negative Energy Waves

A. Conservation of Energy

So far we have been concerned only with the dispersion relation and the associated direct instability of the Kelvin–Helmholtz type. Next we consider the stability of wave propagation from a standpoint of the wave energy. Basically, the energy consists of the kinetic and potential energies associated not only with the air in the tunnel, i.e., in the annular region, but also with the beam and the resonators. For their calculation, it is advantageous to work in the moving frame. Taking the velocity potential to be $-U^T + \Phi(r, \theta, \xi, \tau)$, Eq. (1) is rewritten as

$$\left(\frac{\partial}{\partial r} - U \frac{\partial}{\partial \xi} \right)^2 \Phi = \alpha_0^2 \left(\frac{\partial^2 \Phi}{\partial r^2} + \frac{1 + \alpha_0^2 2}{r} \frac{\partial \Phi}{\partial r} + \frac{\partial^2 \Phi}{\partial \xi^2} + \frac{\partial^2 \Phi}{\partial \tau^2} \right)$$

In terms of F, Eq. (2) is given by

$$P(r, \theta, \xi, \tau) = -\mu_0 \left(\frac{\partial \Phi}{\partial r} - U \frac{\partial \Phi}{\partial \xi} \right)$$

and Eqs. (3) and (10) are rewritten, respectively, as

$$\frac{\partial \Phi}{\partial r} = \left(\frac{\partial H}{\partial r} - U \frac{\partial H}{\partial \xi} \right) \cos \theta$$

and

$$\frac{\partial \Phi}{\partial \xi} = \left(\frac{\partial P}{\partial r} - U \frac{\partial P}{\partial \xi} \right)$$

where $P = P(\theta, \xi, \tau) = \rho_c(\theta, \xi, \tau)$, $\xi = \xi + U \tau, \tau = \tau$.

Since the wave propagation is in essence one dimensional along the tunnel and all dissipative effects are discarded, we expect the equation for the conservation of energy in the following form:

$$\frac{\partial E}{\partial \tau} + J = 0$$

To derive the specific form of E and J, we must start with the respective equations of energy for the air, beam, and cavity. For the air in the tunnel, the conservation of energy is given in the three-dimensional form as follows (see Appendix B):

$$\frac{\partial E_a}{\partial \xi} + V \cdot J_a = 0$$

where e_a and J_a are defined, respectively,

$$e_a = \rho \left(\frac{\partial \Phi}{\partial \xi} \right)^2 + \frac{1}{2} \left(\frac{\partial \Phi}{\partial \xi} \right)^2 + \frac{1}{2} \left(\frac{\partial \Phi}{\partial \tau} \right)^2 + \frac{1}{2} \left(\frac{\partial \Phi}{\partial \tau} \right)^2 + \frac{1}{2} \left(\frac{\partial \Phi}{\partial \tau} \right)^2$$

and

$$J_a = \left(P - \rho \frac{\partial U}{\partial \xi} \right) \nabla \Phi + \frac{1}{2} \left(\frac{\partial \Phi}{\partial \xi} \right)^2$$

with the unit vector ξ directed toward the ξ axis. Here the energy density is defined as the difference from the unperturbed state. It is worth noting that the last term in Eq. (59) accounts for the quadratic contribution of the density change P/ρ_a to the kinetic energy.

The equation of energy for the beam can be derived by multiplying Eq. (4) by $\partial H/\partial \tau$ as follows:

$$\frac{\partial H}{\partial \xi} + J_b = \frac{Q}{2}$$

where β_i may be set to be $(k_i^2 - \omega_i^2) / 2$. Hence when κ is small enough, it holds approximately that

$$\frac{\mu_i}{\alpha_i} \approx \frac{\sigma \kappa \omega_i^4}{2 \nu \omega_i^2 D_i}$$

Noting that D_i is the even function of β and that β_i is real or purely imaginary, D_i is always real. Furthermore because ω_i^2/ω_j^2 is positive, μ_i/α_i is negative so that no instability occurs around these intersections. Hence the numerical result is endorsed by the asymptotic analysis.
where \(E_b\) and \(J_b\) are given, respectively, by

\[
E_b = \frac{m}{2} \left(\frac{\partial H}{\partial \tau} \right)^2 + \frac{E}{2} \left(\frac{\partial^2 H}{\partial \xi^2} \right)^2 + \frac{K}{2} H^2 \quad (62)
\]

and

\[
J_b = EI \left(\frac{\partial H}{\partial \tau} \frac{\partial^3 H}{\partial \xi^2} - \frac{\partial^2 H}{\partial \xi^2} \frac{\partial^2 H}{\partial \xi^2} \right) \quad (63)
\]

The right-hand side of Eq. (61) is the power input by the air. For the resonator, on the other hand, we multiply Eq. (6) by \(p_c/p_0\) and Eq. (7) by \(Bw\), respectively, and add them to derive the equation of energy

\[
\frac{\partial \mathcal{E}_c}{\partial \tau} = Bp_kw \quad (64)
\]

where \(\mathcal{E}_c\) denotes the kinetic and potential energies involved in a single resonator and is given by

\[
\mathcal{E}_c = \frac{\rho_0}{2} BLw^2 + \frac{V p_c^2}{2 \rho_0 a_0} = \frac{1}{2 \rho_0 a_0} \left[\left(\frac{\partial p_c}{\partial \tau} \right)^2 + p_c^2 \right] \quad (65)
\]

Equation (64) equates the power supplied from the tunnel with the rate of increase in \(\mathcal{E}_c\).

The first term on the left-hand side represents the power input into the resonators. The second term results from the quadratic transfer of the first-order kinetic energy \(-\rho_0 U \partial \Phi / \partial \xi\) by \(w^*\) into the resonators. Introducing Eq. (72) into Eq. (69), \(J_e\) can be expressed as

\[
J_e = \mathcal{N} \int_{t_1}^{t_2} E_e \, dt + \int_{t_1}^{t_2} J_e \, dt \quad (73)
\]

where \(E_e\) and \(J_e\) as a result of all resonators on the periphery of the tunnel are defined, respectively, as

\[
E_e = \mathcal{N} \int_{t_1}^{t_2} \mathcal{E}_e \, R \, dt \quad (74)
\]

\[
J_e = -U E_e - \frac{U V^*}{\rho_0 a_0} \int_{t_1}^{t_2} \left[\frac{p_c^2}{2} - \frac{1}{2 \rho_0 a_0} \left(\frac{\partial p_c}{\partial \tau} \right)^2 \right] R \, dt \quad (75)
\]

Substituting \(J_e\) and \(J_e\) into Eq. (66), we modify the energy density and flux associated with \(\mathcal{E}_c\) and \(J_e\), respectively, to incorporate the first and last terms of \(J_e\) in Eq. (71) and define \(E_e\) and \(J_e\), respectively, by

\[
E_e = \int_{t_1}^{t_2} \mathcal{E}_e \, R \, dt + \rho_0 U b H \int_{t_1}^{t_2} \frac{\partial \Phi}{\partial \xi} \cos \theta \, d\theta \quad (76)
\]

and

\[
J_e = J_e - \rho_0 U b H \int_{t_1}^{t_2} \frac{\partial \Phi}{\partial \xi} \cos \theta \, d\theta \quad (77)
\]

With such definitions, Eq. (66) can be recast into the form of Eq. (57) integrated over the control volume where \(E\) and \(J\) are specified, respectively, as

\[
E = E_e + E_b + E_c \quad (78)
\]

\[
J = J_e + J_b + J_c \quad (79)
\]

B. Mean Energy Density and Flux

Next we consider the averages of \(E\) and \(J\) over one period of oscillation \(T (\approx 2\pi / \omega)\) in the moving frame, which are defined by

\[
\mathcal{E} = \frac{1}{T} \int_{t}^{t+T} E \, dt \quad \text{and} \quad \mathcal{J} = \frac{1}{T} \int_{t}^{t+T} J \, dt \quad (80)
\]
Using the solutions in Sec. III, one can calculate E as

$$E = 2\omega \left[\frac{\pi \rho \omega}{a_0^3} \int_0^b |f|^2 r dr + \left(\frac{1}{\omega} (ma'Uk + EIk^4 + K) \right) + \frac{\pi \rho \nu V^*}{a_0^3 R F_2^2 (1 - \omega^2/\omega_0^2)} \right] |C|^2 \right] \right]$$

Here the integral term results from the first term in Eq. (76). Taking the time average over one period, it follows that

$$\frac{1}{T} \int_0^T d\tau \int_0^{2\pi} d\theta \int_0^r |f|^2 r dr + \frac{\pi \rho \nu V^*}{a_0^3 R F_2^2 (1 - \omega^2/\omega_0^2)} |C|^2$$

where the overbar implies a complex conjugate. On the other hand, J is calculated as

$$J = 2\omega \left[\frac{\pi \rho \omega}{a_0} \int_0^b |f|^2 r dr + \frac{\pi \rho \nu V^*}{a_0^3 R F_2^2 (1 - \omega^2/\omega_0^2)} \right] |C|^2$$

The integral of f in Eqs. (81) and (83) is evaluated in Appendix C. Using Eq. (77), one can show that

$$E = \omega \frac{\partial D}{\partial \omega} |C|^2$$

and

$$J = -\omega \frac{\partial D}{\partial k} |C|^2$$

where D is regarded as $D(k, \omega)$. To calculate the partial derivative of D, we regard the left-hand side of Eq. (30) as $D[\beta(k, \omega), k, \omega']$ to differentiate as

$$\frac{\partial D}{\partial \omega} = \frac{\partial D}{\partial \beta} \frac{\partial \beta}{\partial \omega} + \frac{\partial D}{\partial \omega'} \frac{\partial \omega'}{\partial \omega}$$

and

$$\frac{\partial D}{\partial k} = \frac{\partial D}{\partial \beta} \frac{\partial \beta}{\partial k} + \frac{\partial D}{\partial \omega} \frac{\partial \omega}{\partial k}$$

with

$$\frac{\partial \omega}{\partial \omega'} = -\frac{\omega}{a_0^2 \beta}$$

and

$$\frac{\partial \beta}{\partial k} = \frac{1}{\beta} \left(k - \frac{U}{a_0^2 \omega} \right)$$

In executing the differentiation $\partial D/\partial \omega$ and $\partial D/\partial k$, it is advantageous to make use of the relation (20). From Eqs. (84) and (85), it follows the well-known result that the ratio J/E is nothing but the group velocity, i.e., $J/E = -\partial D/\partial k$.

C. Positive and Negative Energy Waves

Let us calculate $D\partial /\partial \omega$ of the dispersion relation shown in Figs. 2–4. The signs attached to the curves indicate that of $\partial D/\partial \omega$. According to Eq. (84), it is found that all modes in Fig. 2 correspond to those of positive energy waves. In Fig. 3 for the case with $G = \kappa = 0$, it is found for $k > k_0$ that the sign in the upper branch is positive, whereas the sign in the lower branch is negative. Denoting by k_0 a wave number where the upper branch crosses the k axis, it is revealed that the upper branch turns into the mode of negative energy waves in a narrow range near $k_0 < k < k_0$. When the lining is introduced, Fig. 4 shows that the sign of $D\partial /\partial \omega$ is positive in the upper three branches and negative in the lower three branches.

But since the cavity mode intersects the dotted line $\omega = Mk$, say, at $k = k_0$, the mode turns into that of negative energy waves for $k > k_0$. It is found numerically that $\partial D/\partial \omega$ tends to diverge as k increases beyond k_0. Thus given C, the negative energy density E increases infinitely in magnitude. But because the group velocity $d\omega/dk$ tends to $-U$, the energy flux J takes a positive value and increases infinitely. Finally we remark that when G vanishes but with $k = 0.1$, the qualitative features remain the same as those in Fig. 3 for $k = 0$ and the negative energy waves emerge in $k_f < k < k_0$.

VI. Conclusions

This paper has examined aeroelastic wave propagation in the airbeam-cavity system to examine the stability of a beam traveling in a tunnel lined acoustically with Helmholtz resonators. It is found from the lossless dispersion relation that there exist a number of branches, which are classified into the acoustic, beam, and cavity modes. When the beam is free from the lateral restoring force, the temporal instability occurs in the beam mode for a long wavelength ($k < k_0$) and a low frequency. Beyond k_0, it is also found that the stable mode turns into that of negative energy waves for a narrow region $k_f < k < k_0$. It is emphasized, however, that the resonators do not take part in this instability. For the numerical values plausible in the actual train–tunnel system, the wavelength corresponding to k_f is so long that it may become comparable with a train's whole length. To discuss the stability in this case, it becomes necessary to take account of end effects ignored in this analysis.

When the restoring force is present, all modes become neutrally stable for the present choice of the parameters. Therefore it may be concluded that the lining does not give rise to the direct instability of the Kelvin–Helmholtz type. But it is found that the cavity mode turns into the mode of negative energy waves for a short wavelength ($k > k_0$). This suggests that the cavity mode may be destabilized by weak dissipative effects. In designing the resonators, this point should be taken into account. The natural frequency chosen here ($\omega_0 = 1.25$) corresponds physically to 13.5 Hz, whereas k_0 corresponds to the critical wavelength of about 10 m long. This implies that the natural frequency should be chosen higher to avoid the instability since the critical wavelength becomes short in proportion to ω_0. This condition is consistent with another requirement that the natural frequency should be chosen high enough to inhibit emergence of shock waves.

In practice, however, if the wavelength corresponding to k_0 will become comparable or shorter than the spacing between the resonators, then the continuum approximation breaks down and the discrete character in the distribution should be taken into account. Another problem in reality is the effect of induced axial flow in the tunnel. Although this has been neglected by assuming the lossless and linear wave motions, it will be a next target of investigations to estimate the magnitude of the induced flow and to examine whether or not it can significantly change the present results.

Appendix A: Induced Mass of the Beam in the Tunnel

Assume the beam is rigid and let it be forced to oscillate harmonically in the y direction with a given angular frequency ω and a given complex amplitude C in the form of $h(t) = C \exp(-i\omega t)$. Formally this is the case in which k is set equal to zero in Eq. (11) and the equations that follow. Then the axial motion of the beam is immaterial. The induced mass m of the beam per unit axial length is defined by the ratio of the induced inertia $-g_0$, i.e., the force acting on the beam with its sign reversed, to the acceleration d^2h/dt^2 as

$$m = -\pi \rho \rho_0 b f(b)/\omega^2 C = -\pi \rho \rho_0 f_1/f_2$$

with $\beta^2 = -\omega^2$. Figure A1 displays the induced mass m, against the dimensionless frequency ω for $\nu = 0.3$, where the solid and broken
Appendix B: Conservation of Energy for the Air

In the moving frame with the beam, the equations of continuity and of motions are given, respectively, by

\[\frac{\partial}{\partial \xi} \left(\frac{\rho}{2} \mathbf{V} \cdot \mathbf{V} + \frac{\rho_1}{\rho_0 a_0^2} \right) + \nabla \cdot (P \mathbf{V}) = 0 \quad (B1) \]

and

\[\rho_0 \left(\frac{\partial \mathbf{V}}{\partial \tau} - U \frac{\partial \mathbf{V}}{\partial \xi} \right) + \nabla P = 0 \quad (B2) \]

with \(\mathbf{V} = -U e_\xi + \mathbf{V} \phi \) where \(e_\xi \) is the unit vector in the \(\xi \) direction. Multiplying Eq. (B1) by \(P \) and taking the inner product of Eq. (B2) and \(\mathbf{V} \), respectively, to add them, it follows that

\[\left(\frac{\partial}{\partial \tau} - U \frac{\partial}{\partial \xi} \right) \left(\frac{\rho_0}{2} \mathbf{V} \cdot \mathbf{V} + \frac{\rho_1}{\rho_0 a_0^2} \right) + \nabla \cdot (P \mathbf{V}) = 0 \quad (B3) \]

To express Eq. (B3) in terms of \(\Phi \), we make use of the relation

\[\frac{\partial}{\partial \xi} \left(\frac{\rho_0}{2} \mathbf{V} \cdot \mathbf{V} + \frac{\rho_1}{\rho_0 a_0^2} \right) = -\rho_0 U \frac{\partial^2 \Phi}{\partial \xi^2} + \rho_0 \mathbf{V} \cdot \left(\frac{\partial \Phi}{\partial \xi} \mathbf{V} \phi \right) - \rho_0 \frac{\partial \Phi}{\partial \xi} \Delta \Phi \quad (B4) \]

where \(\Delta \) denotes the Laplacian. The last term on the right-hand side can further be transformed by using Eq. (54) into

\[-\rho_0 \frac{\partial \Phi}{\partial \xi} \Delta \Phi = \frac{1}{a_0^2} \frac{\partial}{\partial \tau} \left(P \frac{\partial \Phi}{\partial \xi} \right) - \frac{1}{2a_0^2} \frac{\partial}{\partial \xi} \left(\frac{P \frac{\partial \Phi}{\partial \xi}}{a_0^2} + U \frac{\partial \Phi}{\partial \tau} \right) \quad (B5) \]

where \(\Delta \Phi \) is replaced by the left-hand side of Eq. (53) divided by \(a_0^2 \). Introducing Eq. (B4) with Eqs. (B5) and (54) for \(P \) into Eq. (B3), we can derive Eq. (58) for the three-dimensional equation of the conservation of energy for the air.